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Abstract
The dynamics of an unbiased spin-boson model with Lorentzian spectral density is investigated
theoretically in terms of the perturbation theory based on a unitary transformation. The
population difference P(t) and susceptibility χ ′′(ω) are calculated for both the off-resonance
case � � 0.5� and the on-resonance case � ∼ �. The approach is checked by Shiba’s relation
and the sum rule. As well, the coherent–incoherent transition point αc can be determined.

1. Introduction

Quantum computation has shown a lot of advantages in
performing certain tasks [1, 2]. As the basis of a quantum
computer, a quantum bit (qubit) is one of the most attractive
research topics today. Qubits were realized many years ago by
using microscopic degrees where the decoherence was small
enough to exhibit quantum coherence [3, 4]. However, those
qubit schemes are difficult to implement for the desired large
numbers of interacting qubits which would be of practical
value for computation [5]. Therefore, many scalable qubit
schemes such as charge, phase and flux qubits are proposed
and realized in the last decade [6–8]. Among them, the
macroscopic qubit schemes, which were first proposed in
Leggett’s pioneering work [9], aroused a lot of interest not only
for its potential application in quantum computation, but also
for its theoretical importance in understanding the boundary
between classical and quantum physics.

Since the decoherence is still the biggest problem of
quantum computation and quantum information, many of the
proposed schemes have a common feature, to minimize the
decoherence. That is, the qubit is designed to be not directly
coupled to the multi-mode dissipative environment but to a few
quantum modes which themselves are coupled to a dissipative
environment [8, 10]. In this paper, we focus on the dynamics of
a qubit indirectly dissipated by a multi-mode bosonic bath via
a quantum oscillator. This model can be interpreted as a flux
qubit detected by a SQUID, where the LC resonance circuit
acts as a harmonic oscillator (HO) and the current noise is the
source of the dissipative environment [8]. It can also describe a
qubit placed in a leaky cavity where the single cavity mode act
as an HO and the cavity loss is the dissipation [10]. It has been

proved that such a spin-oscillator-bath model can be mapped
to a spin-boson model (SBM) with a structured bath such as a
bath of Lorentzian form [11–14]:

J (ω) = 2αω�4

(�2 − ω2)2 + (2π�ω�)2
. (1)

The SBM with a conventional bath, such as ohmic bath,
piezoelectric bath, etc, can describe a qubit dissipated by a non-
interacting multi-mode environment, and it has been studied
intensively by various methods [15–17]. However, such a
Lorentzian form of bath poses challenge to most of those
methods, especially in the large dissipative condition [18].
Until now, the effect of such a structured spectral density has
been studied by the quasi-adiabatic propagator path integral
(QUAPI) [19], the flow-equation method [18, 20] and the
non-interacting blip approximation (NIBA) [18, 21]. The
coherence–decoherence transition point has not been provided
so far, which means the large dissipative case has not been
studied well enough. However, in most scalable qubit
schemes realized today, the dissipations are always very
large, so a method that can work under severe dissipation
would be important in understanding qubit behavior [22].
In the present work, we study this problem in terms of
the perturbation treatment based on a unitary transformation.
This method, which was proposed by Zheng [23], can
lead to analytical results for the population difference and
susceptibility. The coherence–decoherence transition point
αc can thus be obtained. Since the unitary transformation
reasonably separates the dominant part and the lesser one, even
though it is a second-order perturbation method, it still works
well for a wide parameter range.
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This paper is organized as follows. In section 2, we present
the model and introduce our method briefly. In section 3,
we calculate the population difference P(t) and compare the
results with those of the other methods. In section 4, the
susceptibility is calculated and a validation of Shiba’s relation
is given. In section 5, the coherence–decoherence transition
point αc is studied.

2. Model and treatment

We characterize the qubit by a pseudospin-1/2 operator σx as
usual (unbiased condition) and the dissipative environment by
a multi-mode bosonic bath. Assuming all the couplings to
be linear, the qubit-HO–bath interaction Hamiltonian can be
written as (h̄ = 1)

H = −�

2
σx + P2

2M
+ M�2

2
(X + qσz)

2

+
∑

k

[
p̃2

k

2m̃k
+ m̃kω̃

2
k

2

(
x̃k + c̃k X

m̃kω̃k

)2
]

, (2)

where � represents the frequency of tunneling between
the two states of the qubit, � is the frequency of HO,
ω̃k ’s are the frequencies of each mode of the bosonic bath
(k = 1, 2, 3, . . .) and qσz is the displacement of the qubit
caused by the interaction with the HO, which also has a
displacement of c̃k X/(m̃k ω̃k) caused by the interaction with
the bath. According to the procedure of second quantization,
the Hamiltonian becomes [20]

H = −�

2
σx + �B† B +

∑

k

ω̃k b̃†
k b̃k + (B† + B)

×
[

gσz +
∑

k

κk (̃b
†
k + b̃k)

]
+ (B† + B)2

∑

k

κ2
k

ω̃k
, (3)

where B (or B†) and b̃k (or b̃†
k ) are the annihilation (or creation)

operators of the HO and bath, g and κk are the coupling
constants. The effect of the bath is fully defined by the spectral
density, which is assumed to be of ohmic form: J̃ (ω) ≡∑

k κ2
k δ(ω − ω̃k) = �ωθ(ωc − ω).

Such a Hamiltonian can be mapped to the conventional
spin-boson model [11, 12]:

H = −�

2
σx +

∑

k

ωkb†
kbk + 1

2
σz

∑

k

gk(b
†
k + bk), (4)

where the spin dynamics depends only on the Lorentzian
structured spectral density J (ω) given by equation (1) with
α = 8�g2/�2. Note that, when the characteristic frequency
� is higher than the others, say � > 2�, J (ω) is nearly the
same as the ohmic spectral density which has been extensively
studied. This case will be called off-resonance. For the on-
resonance case � ∼ �, the physical properties of the coupling
system with Lorentzian structured spectral density may be
quite different from those of the ohmic bath.

According to Zheng’s proposal [23], we apply a
unitary transformation to the Hamiltonian (4): H ′ =
exp(S)H exp(−S), with the generator S ≡ ∑

k
gk

2ωk
ξk(b

†
k −

bk)σz . If ξk = 1, it reduces to the usual polaron transformation.

After the unitary transformation, the Hamiltonian can be
decomposed into three parts:

H ′
0 = −σx

2
η� +

∑

k

ωkb†
k bk −

∑

k

g2
k

4ωk
ξk(2 − ξk), (5)

H ′
1 = σz

2

∑

k

gk(1 − ξk)(b
†
k + bk) − iσy

2
η�X, (6)

H ′
2 = −σx

2
� {cosh X − η} − iσy

2
�{sinh X − ηX}, (7)

where X ≡ ∑
k

gk

ωk
ξk(b

†
k − bk) and η is the thermodynamic

average of cosh X . In the limit of zero temperature it is

η = exp

[
−

∑

k

g2
k

2ω2
k

ξ 2
k

]
. (8)

Obviously, H ′
0 can be solved exactly since the spin and

bosons are decoupled in H ′
0. η� gives a rough approximation

of the renormalized qubit frequency and (η − 1)� is the
corresponding Lamb shift of the qubit due to the coupling to
the bath. The eigenstate of H ′

0 can be expressed as a direct
product |s〉|{nk}〉, where |s〉 is the eigenstate of σx and |{nk}〉
is the eigenstate of the phonons, which means that there are nk

phonons for mode k. Therefore, the ground state of H ′
0 is given

by |g0〉 = | s1〉|{0k}〉, where | s1〉 is the lower eigenstate of the
spin and |{0k}〉 stands for the vacuum state of the bosons.

The choice of η in equation (8) ensures H ′
2 contains

only the terms of two-boson and multi-boson non-diagonal
transitions and its contribution to physical quantities is (g2

k)
2

and higher. Therefore, H ′
2 can be omitted in the following

discussion. In order to minimize H ′
1, we let H ′

1|g0〉 = 0, and
the parameters ξk ’s are determined as

ξk = ωk

ωk + η�
. (9)

Note that 0 � ξk � 1 measures the intensity of the spin-
boson coupling ξk ∼ 1 if the boson frequency ωk is larger than
the renormalized tunneling η�, but ξk � 1 for ωk � η�.
Since the transformation generated by S is a displacement,
physically, one can see that high-frequency bosons (ωk >

η�) follow the tunneling particle adiabatically because the
displacement is gkξk/ωk ∼ gk/ωk . However, bosons of
low-frequency modes ωk < η� in general are not always
in equilibrium with the tunneling particle, hence the particle
moves in a retarded potential arising from the low-frequency
modes. When the non-adiabatic effect dominates, ωk � η�,
the displacement ξk � 1. In addition, because of such a choice
of ξk , H ′

1 is automatically of rotating-wave form:

H ′
1 =

∑

k

Vk(b
†
kσ− + bkσ+), (10)

where Vk = η�gkξk/ωk = gkη�/(ωk + η�) and σ± ≡ (σz ∓
iσy)/2. Actually, some effect of the anti-rotating-wave terms
has been taken into account in H ′

1 by the unitary transformation
which is embodied in the renormalized coupling constant Vk .

2
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3. The population difference

The population difference P(t) is defined as P(t) =
〈φ(t)|σz |φ(t)〉 and |φ(t)〉 is the wavefunction in the
Schrödinger picture. We choose the initial state as |+〉|b,+〉,
where |+〉 is the eigenstate of σz = +1 and |b,+〉 is the state
of bosons adjusted to the state of σz = +1. Because of the
unitary transformation, the population difference P(t) can be
written as

P(t) = 〈{0}|〈+| eiH ′tσz e−iH ′t |+〉|{0}〉. (11)

In the zero-temperature limit, second-order perturbation can
be applied to the transformed Hamiltonian and the population
difference is given by [23]

P(t) = Re

{
1

4π i

∮
dE ′ e−iE ′t

E ′ − η� − R(E ′) + iγ (E ′)

}
. (12)

The contour of the integrand in equation (12) is composed of
a straight line located on the real axis and a semicircle below
the real axis with infinite radius. The direction of the contour
is anti-clockwise. R(E ′) and −γ (E ′) in equation (12) are the
real and imaginary parts of

∑
k V 2

k /(E ′ + i0+ − ωk) and they
can be written as

R(ω) =
∫ ∞

0
dω′ (η�)2 J (ω′)

(ω′ + η�)2(ω − ω′)
, (13)

γ (ω) = π(η�)2 J (ω)/(ω + η�)2. (14)

We should emphasize that the integral expression in
equation (12) is an exact one under our second-order
approximation scheme and it can be done by using the residue
theorem approximately. Suppose the poles of the integrand are
E p = ωp − iγp: then the population difference becomes

P(t) =
∑

p

ap e−γp t cos(ωpt), (15)

where the renormalized qubit frequency ωp is the solution of
the equation

ω − η� − R(ω) = 0, (16)

decay rate is γp = apγ (ωp) and ap can be interpreted as the
weight of each oscillating mode. If there is only one solution
of equation (16), then ap = 1. However, if two solutions
ωp = ω± appear, then a+ = η�−ω−

ω+−ω− and a− = ω+−η�

ω+−ω− .
To check the result, a comparison between our result and

the ones of exactly solvable models would make sense. In
the limit of small HO–bath coupling (� → 0), corresponding
to large quality factors of the HO, the spectral density J (ω)

goes to 8g2

�
δ( ω

�
− �

ω
), where α = 8�g2/�2 has been applied.

Therefore, from equation (13), R(ω) goes to 4g2(η�)2

(�+η�)2(ω−�)
.

According to equation (16), the renormalized qubit frequency
ωp is

ωp = � + η�

2
±

√(
� − η�

2

)2

+ 4g2(η�)2

(� + η�)2
≡ ω±. (17)
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Figure 1. The renormalized tunneling frequency ωp versus the
coupling strength α. Main plot: �/� = 0.1, � = 0.02; inset:
�/� = 1.1, � = 0.06. The results of the other methods are from
Wilhelm’s article [18].

Suppose the resonance condition is � = η� rather than
� = �, though the two frequencies η� and � are nearly the
same when � is very small. For the resonance condition, where
the rotating-wave approximation (RWA) is believed to be valid,
we obtain ω± = � ± g, which fully agrees with the result of
the simple Jaynes–Cummings model [24].

In the case of finite detuning δ ≡ |� − η�|, and weak
coupling between qubit and HO, from equation (17) we find
(assuming, e.g., � > �)

ω+ = � + 4g2η2�2

δ(� + η�)2
(18)

ω− = η� − 4g2η2�2

δ(� + η�)2
(19)

yielding ω+ − ω− = δ(1 + 8g2η2�2

δ2(�+η�)2 ). Similar as in [21], ω−
can be interpreted as the Stark-shifted qubit frequency due to
the coupling with the harmonic mode.

In what follows, we show the renormalized tunneling
frequency ωp calculated numerically from equation (16) for
both off- and on-resonance cases without the limitation of
weak HO–bath coupling. Here, we only choose the one
corresponding to the intrinsic qubit frequency � in order to
compare with the results of other methods. The main plot
in figure 1 describes the off-resonance case. We can see that
the tunneling frequency ωp decreases as the coupling strength
α increases. This is similar to the ohmic case because the
Lorentzian structured spectral density becomes the ordinary
ohmic one for �/� � 1. However, it is quite different
for the on-resonant case with � ∼ � (the inset of figure 1).
We can see that, as the coupling strength α increases, the
tunneling frequency ωp increases too. It is said that the
coupling enhances the tunneling frequency [18].

Note that, in the main plot of figure 1, our calculation of
the renormalized qubit frequency ω0 is very close to the one
given by adiabatic renormalization. It may be the result of the
similar spirit between the adiabatic renormalization and our
method. Both of them consider the high-frequency phonons

3
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Figure 2. The dynamics of population difference P(t). The
parameters are: α = 0.004, � = �, � = 0.097/(2π). The result of
the non-interacting blip approximation (NIBA) method are from
Nesi’s article [21].

(This figure is in colour only in the electronic version)

can follow the electron adiabatically (see our discussion of
ξk in section 2). Following the adiabatic renormalization
method [25], the renormalized qubit frequency is

�̃ = � exp

[
−

∫ ∞

p�̃

dω
J (ω)

2ω2

]
, (20)

where p is some number larger compared to unity. This
expression is quite similar to our calculation of η�:

�̃ = η� = � exp

[
−

∫ ∞

0
dω

J (ω)

2(ω + �̃)2

]

= � exp

[
−

∫ ∞

�̃

dω
J (ω − �̃)

2ω2

]
. (21)

However, we should emphasize that our calculation of ω0

not only takes the adiabatic phonons into account, but also
includes the first-order term H ′

1 (see equation (10)), which
enables us to calculate the dissipative dynamics of physical
quantities. Moreover, from equation (20) we can see that the
adiabatic renormalization can never predict the positive change
of the tunneling frequency since �̃ is always less than �.

In figure 2, the population difference P(t) is calculated
according to equation (15) and compared with the result of the
non-interacting blip approximation (NIBA) method. Here, the
coupling constant α is very small, where the NIBA method
is believed to be correct. Our result shows good agreement
with NIBA. Note that it is in the on-resonance case and one
can see that P(t) shows a double-frequency oscillation. In the
following discussion we will see that our method can actually
work well for much stronger coupling constant α, no matter if
it is in the off-or on-resonance case.

In figure 3, we fix the coupling constant α = 0.01 and
� = 0.02. The behaviors of P(t) are shown for different
ratios �/�. The curves show that it is only a single-frequency
oscillation for the off-resonance case (�/� � 0.5). However,
in the on-resonance region (� ∼ �), P(t) exhibits two
characteristic frequencies which are both important to the time
evolution of the population difference. In figure 4, we fix
it in the case of � = � and � = 0.02. By altering the
coupling constant α, the population difference P(t) changes
significantly. These curves show that P(t) damps out quickly,
just like an over-damping curve as α becomes large enough.

Here, to make it more clear, we summarize the merit
of our method compared to NIBA, QUAPI and adiabatic
renormalization. Firstly, our method can work under severe
dissipation compared to NIBA. Secondly, positive change of
the tunneling frequency can be predicted under our framework
when � ≈ �, which can never be predicted by adiabatic
renormalization. Finally, our method is mainly analytical,

Figure 3. The dynamics of population difference P(t) for different detuning. The parameters are: α = 0.01, � = 0.02.
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Figure 4. The dynamics of population difference P(t) for different coupling strength α in the on-resonance case. The parameters are:
� = �, � = 0.02.

which may give more intuitive inspections into this problem
compared to QUAPI [19, 26].

4. The susceptibility and Shiba’s relation

The retarded Green’s function is defined as

G(t) = −iθ(t)〈[σz(t), σz ]〉β, (22)

where 〈· · ·〉β represents the average with thermodynamic
probability exp(−β H ′) and [A, B] is the commutator AB–
B A. The Fourier transformation of G(t) is denoted as G(ω)

which satisfies an infinite chain of equations of motion. We
make the cutoff approximation for the equation chain at the
second order of gk and the solution for T = 0 is [23]

G(ω) = 1

ω − η� − ∑
k V 2

k /(ω − ωk)

− 1

ω + η� − ∑
k V 2

k /(ω + ωk)
. (23)

The susceptibility χ(ω) = −G(ω), and its imaginary part is

χ ′′(ω) = γ (ω)θ(ω)

[ω − η� − R(ω)]2 + γ 2(ω)

− γ (−ω)θ(−ω)

[ω + η� + R(−ω)]2 + γ 2(−ω)
. (24)

Define the function S(ω) as S(ω) = χ ′′(ω)/ω with its limit at
ω → 0 being

lim
ω→0

S(ω) = 2πα

[η� + R(0)]2
. (25)

Also, the static susceptibility can be obtained from the
imaginary part according to the Kramers–Kronig relation:

χ ′(ω = 0) = 1

π

∫ ∞

−∞
χ ′′(ω)

ω
dω. (26)

Figure 5. The coherent–incoherent transition point αc versus �/�
for different �.

One can check that Shiba’s relation [27–30]:

lim
ω→0

S(ω) = π

2
α[χ ′(ω = 0)]2 (27)

is exactly satisfied within the computational precision as
long as α is smaller than αc (see section 5), where a
coherent–incoherent transition is believed to occur. Table 1
is the validation of Shiba’s relation for some representative
parameters.

5. The coherent–incoherent transition

In this section, we confine our discussion to the off-resonant
regime (� � 0.5 �). In section 3 we have demonstrated
that the tunneling frequency ωp decreases as the coupling

5
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Figure 6. The dynamics of population difference P(t). Main plot: P(t) is very like a over-damping curve. Inset: frequency dependence of
population difference. The parameters are: α = 0.499 97, �/� = 0.5, � = 0.02.

Table 1. Shiba’s relation are checked for both off- and on-resonance cases.

α �/� � limω→0 S(ω) χ ′(ω = 0) 2
πα

limω→0 S(ω)

[χ ′(ω=0)]2

0.05 0.5 0.02 1.309 888 805 4.083 873 432 1.000 000 004
0.2 0.5 0.02 1406.318 989 66.906 295 42 1.000 000 002
0.3 0.5 0.02 265 071.3813 749.999 2950 0.999 999 998
0.4 0.5 0.02 341 991 358.2 23 330.155 36 1.000 000 005
0.45 0.5 0.02 5.168 917 × 1010 270 416.7374 1.000 000 022
0.499 97 0.5 0.02 1.728 027 × 1021 4.691 108 × 1010 0.999 852 380
0.02 1.1 0.02 0.189 822 271 2.458 103 206 0.999 993 244
0.03 1.1 0.02 0.359 108 802 2.760 528 394 1.000 001 105
0.06 1.1 0.02 1.663 093 714 4.200 714 470 0.999 998 317
0.1 1.1 0.02 15.344 894 38 9.883 756 902 0.999 999 810
0.15 1.1 0.02 15 978.213 81 260.410 5454 0.999 999 903

strength α increases. As α becomes larger and larger, and
finally reaches a particular value αc where ωp becomes 0, P(t)
then is just a pure damping curve according to equation (15).
Therefore, at this particular point αc, a coherent–incoherent
transition occurs. By substituting ωp = 0 into equation (16),
αc can be determined as shown in figure 5. Therefore, αc

represents the transition from a damped oscillation to over-
damping. On the other hand, the function S(ω) obtained in
section 4 also shows very specific behavior at the coherent–
incoherent transition point. For coherent oscillation, S(ω) has
a double-peak structure symmetrical with respect to ω = 0.
However, as soon as the system becomes incoherent, S(ω)

would have only a quasi-elastic peak at around ω = 0.
Therefore, the behavior of S(ω) can also be a check of the
coherent–incoherent transition point αc.

Since this is a perturbation treatment, we must check
carefully whether our method is still applicable as α becomes
larger and larger. Here, we choose the parameters �/� =
0.5 and � = 0.02 to show our checking process. From

equation (16), we have αc = 0.499 97. The population
difference is depicted at this critical point as shown in figure 6.
We find P(t) is almost a over-damping curve at the transition
point α = αc and its Fourier transformation shows that
the renormalized tunneling frequency is very close to zero
(<10−11�). On the other hand, from figure 7 we can find
S(ω) also confirms this result. At this critical point, S(ω)

transforms from a double-peak structure to a quasi-elastic
peak at ω = 0. In addition, by calculating the integral in
equation (12) numerically, the sum rule P(0) = 1 is always
exactly satisfied within the computational precision when α is
smaller than αc. The same thing happens for Shiba’s relation
(see table 1). Moreover, according to figure 5, we should note
that αc is 1/2 at the scaling limit �/� � 1, which is the same
as predicted by previous authors in the case of an ohmic bath.
However, our result demonstrates that, as the system deviates
from the scaling limit, the coherent–incoherent transition point
αc is always less than 1/2, which is different from the ohmic
case where αc is always larger than 1/2 for finite � [23].

6
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Figure 7. S(ω) versus ω for different cases. The transition from a double-peak structure of S(ω) to a quasi-elastic peak indicates the
coherent–decoherent transition.

6. Conclusion

The dynamics of an unbiased spin-boson model with
Lorentzian spectral density is investigated through a pertur-
bation method based on a unitary transformation. An alter-
native view of the model is a two-state system coupled to
a single harmonic oscillator with frequency �, the latter be-
ing weakly coupled to an ohmic bath. By comparing with
the other approaches, ours shows some advantages: it works
well for both the off-resonance case � � 0.5� and the on-
resonance case � ∼ �, and the coupling constant α may
be as large as the coherence–incoherence transition point αc.
We calculate the population difference P(t) and the suscepti-
bility χ ′′(ω), and find the result agrees well with the simple
Jaynes–Cummings model for the resonance case � = η�,
under the weak oscillator–bath coupling approximation. The
coherent–incoherent transition point αc is determined, which
has not been demonstrated for the structured bath by previous
authors to our knowledge. The sum rule and Shiba’s relation
are checked carefully as α approaches αc and they are always
exactly satisfied as long as α is smaller than αc. Admittedly,
this method is not suitable for very large system-bath coupling,
e.g. α > αc, where the sum rule and Shiba’s relation are no
longer satisfied. However, in practical systems a method that
works under αc is good enough since we are always interested
in the regime of coherent oscillation.
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